VTK  9.1.0
Public Types | Public Member Functions | Static Public Member Functions | Protected Member Functions | Protected Attributes | List of all members
vtkSurfaceLICInterface Class Reference

public API for surface lic parameters arbitrary geometry. More...

#include <vtkSurfaceLICInterface.h>

Inheritance diagram for vtkSurfaceLICInterface:
[legend]
Collaboration diagram for vtkSurfaceLICInterface:
[legend]

Public Types

typedef vtkObject Superclass
 

Public Member Functions

virtual vtkTypeBool IsA (const char *type)
 Return 1 if this class is the same type of (or a subclass of) the named class.
 
vtkSurfaceLICInterfaceNewInstance () const
 
void PrintSelf (ostream &os, vtkIndent indent) override
 Methods invoked by print to print information about the object including superclasses.
 
virtual void WriteTimerLog (const char *)
 Methods used for parallel benchmarks.
 
void ShallowCopy (vtkSurfaceLICInterface *m)
 Make a shallow copy of this interface.
 
virtual void ReleaseGraphicsResources (vtkWindow *win)
 Release any graphics resources that are being consumed by this mapper.
 
bool CanRenderSurfaceLIC (vtkActor *actor)
 Returns true when rendering LIC is possible.
 
void ValidateContext (vtkRenderer *renderer)
 Look for changes that would trigger stage updates.
 
virtual vtkPainterCommunicatorCreateCommunicator (int)
 Creates a new communicator with/without the calling processes as indicated by the passed in flag, if not 0 the calling process is included in the new communicator.
 
void CreateCommunicator (vtkRenderer *, vtkActor *, vtkDataObject *data)
 Creates a new communicator for internal use based on this rank's visible data.
 
vtkPainterCommunicatorGetCommunicator ()
 
void UpdateCommunicator (vtkRenderer *renderer, vtkActor *actor, vtkDataObject *data)
 Called from a mapper, does what is needed to make sure the communicators are ready.
 
void InitializeResources ()
 resoucre allocators
 
void PrepareForGeometry ()
 
void CompletedGeometry ()
 
void GatherVectors ()
 
void ApplyLIC ()
 
void CombineColorsAndLIC ()
 
void CopyToScreen ()
 
virtual void GetGlobalMinMax (vtkPainterCommunicator *, float &, float &)
 Get the min/max across all ranks.
 
void SetNumberOfSteps (int val)
 Get/Set the number of integration steps in each direction.
 
virtual int GetNumberOfSteps ()
 Get/Set the number of integration steps in each direction.
 
void SetStepSize (double val)
 Get/Set the step size (in pixels).
 
virtual double GetStepSize ()
 Get/Set the step size (in pixels).
 
void SetNormalizeVectors (int val)
 Normalize vectors during integration.
 
virtual void NormalizeVectorsOn ()
 Normalize vectors during integration.
 
virtual void NormalizeVectorsOff ()
 Normalize vectors during integration.
 
virtual int GetNormalizeVectors ()
 Normalize vectors during integration.
 
void SetMaskOnSurface (int val)
 When set MaskOnSurface computes |V| for use in the fragment masking tests on the surface.
 
virtual void MaskOnSurfaceOn ()
 When set MaskOnSurface computes |V| for use in the fragment masking tests on the surface.
 
virtual void MaskOnSurfaceOff ()
 When set MaskOnSurface computes |V| for use in the fragment masking tests on the surface.
 
virtual int GetMaskOnSurface ()
 When set MaskOnSurface computes |V| for use in the fragment masking tests on the surface.
 
void SetMaskThreshold (double val)
 The MaskThreshold controls the rendering of fragments in stagnant regions of flow.
 
virtual double GetMaskThreshold ()
 The MaskThreshold controls the rendering of fragments in stagnant regions of flow.
 
void SetMaskColor (double *val)
 The MaskColor is used on masked fragments.
 
void SetMaskColor (double r, double g, double b)
 The MaskColor is used on masked fragments.
 
virtual double * GetMaskColor ()
 The MaskColor is used on masked fragments.
 
virtual void GetMaskColor (double &, double &, double &)
 The MaskColor is used on masked fragments.
 
virtual void GetMaskColor (double[3])
 The MaskColor is used on masked fragments.
 
void SetMaskIntensity (double val)
 The MaskIntensity controls the blending of the mask color and the geometry color.
 
virtual double GetMaskIntensity ()
 The MaskIntensity controls the blending of the mask color and the geometry color.
 
void SetEnhancedLIC (int val)
 EnhancedLIC mean compute the LIC twice with the second pass using the edge-enhanced result of the first pass as a noise texture.
 
virtual int GetEnhancedLIC ()
 EnhancedLIC mean compute the LIC twice with the second pass using the edge-enhanced result of the first pass as a noise texture.
 
virtual void EnhancedLICOn ()
 EnhancedLIC mean compute the LIC twice with the second pass using the edge-enhanced result of the first pass as a noise texture.
 
virtual void EnhancedLICOff ()
 EnhancedLIC mean compute the LIC twice with the second pass using the edge-enhanced result of the first pass as a noise texture.
 
virtual double GetLowLICContrastEnhancementFactor ()
 This feature is used to fine tune the contrast enhancement.
 
virtual double GetHighLICContrastEnhancementFactor ()
 This feature is used to fine tune the contrast enhancement.
 
void SetLowLICContrastEnhancementFactor (double val)
 This feature is used to fine tune the contrast enhancement.
 
void SetHighLICContrastEnhancementFactor (double val)
 This feature is used to fine tune the contrast enhancement.
 
virtual double GetLowColorContrastEnhancementFactor ()
 This feature is used to fine tune the contrast enhancement.
 
virtual double GetHighColorContrastEnhancementFactor ()
 This feature is used to fine tune the contrast enhancement.
 
void SetLowColorContrastEnhancementFactor (double val)
 This feature is used to fine tune the contrast enhancement.
 
void SetHighColorContrastEnhancementFactor (double val)
 This feature is used to fine tune the contrast enhancement.
 
void SetAntiAlias (int val)
 Enable/Disable the anti-aliasing pass.
 
virtual void AntiAliasOn ()
 Enable/Disable the anti-aliasing pass.
 
virtual void AntiAliasOff ()
 Enable/Disable the anti-aliasing pass.
 
virtual int GetAntiAlias ()
 Enable/Disable the anti-aliasing pass.
 
void SetLICIntensity (double val)
 Factor used when blend mode is set to COLOR_MODE_BLEND.
 
virtual double GetLICIntensity ()
 Factor used when blend mode is set to COLOR_MODE_BLEND.
 
void SetMapModeBias (double val)
 Factor used when blend mode is set to COLOR_MODE_MAP.
 
virtual double GetMapModeBias ()
 Factor used when blend mode is set to COLOR_MODE_MAP.
 
void SetNoiseDataSet (vtkImageData *data)
 Set the data containing a noise array as active scalars.
 
vtkImageDataGetNoiseDataSet ()
 Set the data containing a noise array as active scalars.
 
void SetGenerateNoiseTexture (int shouldGenerate)
 Set/Get the noise texture source.
 
virtual int GetGenerateNoiseTexture ()
 Set/Get the noise texture source.
 
void SetNoiseTextureSize (int length)
 Set/Get the side length in pixels of the noise texture.
 
virtual int GetNoiseTextureSize ()
 Set/Get the side length in pixels of the noise texture.
 
void SetNoiseGrainSize (int val)
 Each noise value will be length^2 pixels in area.
 
virtual int GetNoiseGrainSize ()
 Each noise value will be length^2 pixels in area.
 
void SetMinNoiseValue (double val)
 Set/Get the minimum and mximum gray scale values that the generated noise can take on.
 
void SetMaxNoiseValue (double val)
 Set/Get the minimum and mximum gray scale values that the generated noise can take on.
 
virtual double GetMinNoiseValue ()
 Set/Get the minimum and mximum gray scale values that the generated noise can take on.
 
virtual double GetMaxNoiseValue ()
 Set/Get the minimum and mximum gray scale values that the generated noise can take on.
 
void SetNumberOfNoiseLevels (int val)
 Set/Get the number of discrete values a noise pixel may take on.
 
virtual int GetNumberOfNoiseLevels ()
 Set/Get the number of discrete values a noise pixel may take on.
 
void SetImpulseNoiseProbability (double val)
 Control the density of the noise.
 
virtual double GetImpulseNoiseProbability ()
 Control the density of the noise.
 
void SetImpulseNoiseBackgroundValue (double val)
 The color to use for untouched pixels when impulse noise probability < 1.
 
virtual double GetImpulseNoiseBackgroundValue ()
 The color to use for untouched pixels when impulse noise probability < 1.
 
void SetNoiseGeneratorSeed (int val)
 Set/Get the seed value used by the random number generator.
 
virtual int GetNoiseGeneratorSeed ()
 Set/Get the seed value used by the random number generator.
 
void SetHasVectors (bool val)
 Does the data have vectors which we require.
 
bool GetHasVectors ()
 Does the data have vectors which we require.
 
virtual void SetEnable (int)
 Enable/Disable LIC.
 
virtual int GetEnable ()
 Enable/Disable LIC.
 
virtual void EnableOn ()
 Enable/Disable LIC.
 
virtual void EnableOff ()
 Enable/Disable LIC.
 
- Public Member Functions inherited from vtkObject
 vtkBaseTypeMacro (vtkObject, vtkObjectBase)
 
virtual void DebugOn ()
 Turn debugging output on.
 
virtual void DebugOff ()
 Turn debugging output off.
 
bool GetDebug ()
 Get the value of the debug flag.
 
void SetDebug (bool debugFlag)
 Set the value of the debug flag.
 
virtual void Modified ()
 Update the modification time for this object.
 
virtual vtkMTimeType GetMTime ()
 Return this object's modified time.
 
void PrintSelf (ostream &os, vtkIndent indent) override
 Methods invoked by print to print information about the object including superclasses.
 
void RemoveObserver (unsigned long tag)
 
void RemoveObservers (unsigned long event)
 
void RemoveObservers (const char *event)
 
void RemoveAllObservers ()
 
vtkTypeBool HasObserver (unsigned long event)
 
vtkTypeBool HasObserver (const char *event)
 
int InvokeEvent (unsigned long event)
 
int InvokeEvent (const char *event)
 
unsigned long AddObserver (unsigned long event, vtkCommand *, float priority=0.0f)
 Allow people to add/remove/invoke observers (callbacks) to any VTK object.
 
unsigned long AddObserver (const char *event, vtkCommand *, float priority=0.0f)
 Allow people to add/remove/invoke observers (callbacks) to any VTK object.
 
vtkCommandGetCommand (unsigned long tag)
 Allow people to add/remove/invoke observers (callbacks) to any VTK object.
 
void RemoveObserver (vtkCommand *)
 Allow people to add/remove/invoke observers (callbacks) to any VTK object.
 
void RemoveObservers (unsigned long event, vtkCommand *)
 Allow people to add/remove/invoke observers (callbacks) to any VTK object.
 
void RemoveObservers (const char *event, vtkCommand *)
 Allow people to add/remove/invoke observers (callbacks) to any VTK object.
 
vtkTypeBool HasObserver (unsigned long event, vtkCommand *)
 Allow people to add/remove/invoke observers (callbacks) to any VTK object.
 
vtkTypeBool HasObserver (const char *event, vtkCommand *)
 Allow people to add/remove/invoke observers (callbacks) to any VTK object.
 
template<class U , class T >
unsigned long AddObserver (unsigned long event, U observer, void(T::*callback)(), float priority=0.0f)
 Overloads to AddObserver that allow developers to add class member functions as callbacks for events.
 
template<class U , class T >
unsigned long AddObserver (unsigned long event, U observer, void(T::*callback)(vtkObject *, unsigned long, void *), float priority=0.0f)
 Overloads to AddObserver that allow developers to add class member functions as callbacks for events.
 
template<class U , class T >
unsigned long AddObserver (unsigned long event, U observer, bool(T::*callback)(vtkObject *, unsigned long, void *), float priority=0.0f)
 Allow user to set the AbortFlagOn() with the return value of the callback method.
 
int InvokeEvent (unsigned long event, void *callData)
 This method invokes an event and return whether the event was aborted or not.
 
int InvokeEvent (const char *event, void *callData)
 This method invokes an event and return whether the event was aborted or not.
 
- Public Member Functions inherited from vtkObjectBase
const char * GetClassName () const
 Return the class name as a string.
 
virtual vtkTypeBool IsA (const char *name)
 Return 1 if this class is the same type of (or a subclass of) the named class.
 
virtual vtkIdType GetNumberOfGenerationsFromBase (const char *name)
 Given the name of a base class of this class type, return the distance of inheritance between this class type and the named class (how many generations of inheritance are there between this class and the named class).
 
virtual void Delete ()
 Delete a VTK object.
 
virtual void FastDelete ()
 Delete a reference to this object.
 
void InitializeObjectBase ()
 
void Print (ostream &os)
 Print an object to an ostream.
 
virtual void Register (vtkObjectBase *o)
 Increase the reference count (mark as used by another object).
 
virtual void UnRegister (vtkObjectBase *o)
 Decrease the reference count (release by another object).
 
int GetReferenceCount ()
 Return the current reference count of this object.
 
void SetReferenceCount (int)
 Sets the reference count.
 
bool GetIsInMemkind () const
 A local state flag that remembers whether this object lives in the normal or extended memory space.
 
virtual void PrintHeader (ostream &os, vtkIndent indent)
 Methods invoked by print to print information about the object including superclasses.
 
virtual void PrintTrailer (ostream &os, vtkIndent indent)
 Methods invoked by print to print information about the object including superclasses.
 

Static Public Member Functions

static vtkSurfaceLICInterfaceNew ()
 
static vtkTypeBool IsTypeOf (const char *type)
 
static vtkSurfaceLICInterfaceSafeDownCast (vtkObjectBase *o)
 
static bool IsSupported (vtkRenderWindow *context)
 Returns true if the rendering context supports extensions needed by this painter.
 
- Static Public Member Functions inherited from vtkObject
static vtkObjectNew ()
 Create an object with Debug turned off, modified time initialized to zero, and reference counting on.
 
static void BreakOnError ()
 This method is called when vtkErrorMacro executes.
 
static void SetGlobalWarningDisplay (int val)
 This is a global flag that controls whether any debug, warning or error messages are displayed.
 
static void GlobalWarningDisplayOn ()
 This is a global flag that controls whether any debug, warning or error messages are displayed.
 
static void GlobalWarningDisplayOff ()
 This is a global flag that controls whether any debug, warning or error messages are displayed.
 
static int GetGlobalWarningDisplay ()
 This is a global flag that controls whether any debug, warning or error messages are displayed.
 
- Static Public Member Functions inherited from vtkObjectBase
static vtkTypeBool IsTypeOf (const char *name)
 Return 1 if this class type is the same type of (or a subclass of) the named class.
 
static vtkIdType GetNumberOfGenerationsFromBaseType (const char *name)
 Given a the name of a base class of this class type, return the distance of inheritance between this class type and the named class (how many generations of inheritance are there between this class and the named class).
 
static vtkObjectBaseNew ()
 Create an object with Debug turned off, modified time initialized to zero, and reference counting on.
 
static void SetMemkindDirectory (const char *directoryname)
 The name of a directory, ideally mounted -o dax, to memory map an extended memory space within.
 
static bool GetUsingMemkind ()
 A global state flag that controls whether vtkObjects are constructed in the usual way (the default) or within the extended memory space.
 

Protected Member Functions

virtual vtkObjectBaseNewInstanceInternal () const
 
 vtkSurfaceLICInterface ()
 
 ~vtkSurfaceLICInterface () override
 
void UpdateNoiseImage (vtkRenderWindow *renWin)
 Updates the noise texture, downsampling by the requested sample rate.
 
virtual bool NeedToUpdateCommunicator ()
 Return false if stage can be skipped.
 
bool NeedToRenderGeometry (vtkRenderer *renderer, vtkActor *actor)
 Return false if stage can be skipped.
 
bool NeedToGatherVectors ()
 Return false if stage can be skipped.
 
bool NeedToComputeLIC ()
 Return false if stage can be skipped.
 
bool NeedToColorLIC ()
 Return false if stage can be skipped.
 
void SetUpdateAll ()
 Return false if stage can be skipped.
 
- Protected Member Functions inherited from vtkObject
 vtkObject ()
 
 ~vtkObject () override
 
void RegisterInternal (vtkObjectBase *, vtkTypeBool check) override
 
void UnRegisterInternal (vtkObjectBase *, vtkTypeBool check) override
 
void InternalGrabFocus (vtkCommand *mouseEvents, vtkCommand *keypressEvents=nullptr)
 These methods allow a command to exclusively grab all events.
 
void InternalReleaseFocus ()
 These methods allow a command to exclusively grab all events.
 
- Protected Member Functions inherited from vtkObjectBase
 vtkObjectBase ()
 
virtual ~vtkObjectBase ()
 
virtual void RegisterInternal (vtkObjectBase *, vtkTypeBool check)
 
virtual void UnRegisterInternal (vtkObjectBase *, vtkTypeBool check)
 
virtual void ReportReferences (vtkGarbageCollector *)
 
 vtkObjectBase (const vtkObjectBase &)
 
void operator= (const vtkObjectBase &)
 

Protected Attributes

int Enable
 
int NumberOfSteps
 
double StepSize
 
int NormalizeVectors
 
int EnhancedLIC
 
int EnhanceContrast
 
double LowLICContrastEnhancementFactor
 
double HighLICContrastEnhancementFactor
 
double LowColorContrastEnhancementFactor
 
double HighColorContrastEnhancementFactor
 
int AntiAlias
 
int MaskOnSurface
 
double MaskThreshold
 
double MaskIntensity
 
double MaskColor [3]
 
int ColorMode
 
double LICIntensity
 
double MapModeBias
 
int GenerateNoiseTexture
 
int NoiseType
 
int NoiseTextureSize
 
int NoiseGrainSize
 
double MinNoiseValue
 
double MaxNoiseValue
 
int NumberOfNoiseLevels
 
double ImpulseNoiseProbability
 
double ImpulseNoiseBackgroundValue
 
int NoiseGeneratorSeed
 
int AlwaysUpdate
 
int CompositeStrategy
 
vtkSurfaceLICHelperInternals
 
- Protected Attributes inherited from vtkObject
bool Debug
 
vtkTimeStamp MTime
 
vtkSubjectHelper * SubjectHelper
 
- Protected Attributes inherited from vtkObjectBase
std::atomic< int32_t > ReferenceCount
 
vtkWeakPointerBase ** WeakPointers
 
enum  { ENHANCE_CONTRAST_OFF = 0 , ENHANCE_CONTRAST_LIC = 1 , ENHANCE_CONTRAST_COLOR = 3 , ENHANCE_CONTRAST_BOTH = 4 }
 Enable/Disable contrast and dynamic range correction stages. More...
 
void SetEnhanceContrast (int val)
 Enable/Disable contrast and dynamic range correction stages.
 
virtual int GetEnhanceContrast ()
 Enable/Disable contrast and dynamic range correction stages.
 
enum  { COLOR_MODE_BLEND = 0 , COLOR_MODE_MAP }
 Set/Get the color mode. More...
 
void SetColorMode (int val)
 Set/Get the color mode.
 
virtual int GetColorMode ()
 Set/Get the color mode.
 
enum  { NOISE_TYPE_UNIFORM = 0 , NOISE_TYPE_GAUSSIAN = 1 , NOISE_TYPE_PERLIN = 2 }
 Select the statistical distribution of randomly generated noise values. More...
 
void SetNoiseType (int type)
 Select the statistical distribution of randomly generated noise values.
 
virtual int GetNoiseType ()
 Select the statistical distribution of randomly generated noise values.
 
enum  { COMPOSITE_INPLACE = 0 , COMPOSITE_INPLACE_DISJOINT = 1 , COMPOSITE_BALANCED = 2 , COMPOSITE_AUTO = 3 }
 Control the screen space decomposition where LIC is computed. More...
 
void SetCompositeStrategy (int val)
 Control the screen space decomposition where LIC is computed.
 
virtual int GetCompositeStrategy ()
 Control the screen space decomposition where LIC is computed.
 

Additional Inherited Members

- Static Protected Member Functions inherited from vtkObjectBase
static vtkMallocingFunction GetCurrentMallocFunction ()
 
static vtkReallocingFunction GetCurrentReallocFunction ()
 
static vtkFreeingFunction GetCurrentFreeFunction ()
 
static vtkFreeingFunction GetAlternateFreeFunction ()
 

Detailed Description

public API for surface lic parameters arbitrary geometry.

vtkSurfaceLICInterface performs LIC on the surface of arbitrary geometry. Point vectors are used as the vector field for generating the LIC. The implementation was originallu based on "Image Space Based Visualization on Unsteady Flow on Surfaces" by Laramee, Jobard and Hauser appeared in proceedings of IEEE Visualization '03, pages 131-138.

Internal pipeline:

noise
    |
    [ PROJ (GAT) (COMP) LIC2D (SCAT) SHADE (CCE) DEP]
    |                                               |
vectors                                         surface LIC

PROj - prject vectors onto surface GAT - gather data for compositing and guard pixel generation (parallel only) COMP - composite gathered data LIC2D - line intengral convolution, see vtkLineIntegralConvolution2D. SCAT - scatter result (parallel only, not all compositors use it) SHADE - combine LIC and scalar colors CCE - color contrast enhancement (optional) DEP - depth test and copy to back buffer

The result of each stage is cached in a texture so that during interaction a stage may be skipped if the user has not modified its parameters or input data.

The parallel parts of algorithm are implemented in vtkPSurfaceLICInterface. Note that for MPI enabled builds this class will be automatically created by the object factory.

See also
vtkLineIntegralConvolution2D

Definition at line 72 of file vtkSurfaceLICInterface.h.

Member Typedef Documentation

◆ Superclass

Definition at line 76 of file vtkSurfaceLICInterface.h.

Member Enumeration Documentation

◆ anonymous enum

anonymous enum

Enable/Disable contrast and dynamic range correction stages.

Contrast enhancement can be enabled during LIC computations (See vtkLineINtegralComvolution2D) and after the scalar colors have been combined with the LIC.

The best approach for using this feature is to enable LIC enhancement, and only if the image is to dark or dull enable COLOR enhancement.

Both stages are implemented by a histogram stretching algorithm. During LIC stages the contrast enhancement is applied to gray scale LIC image. During the scalar coloring stage the contrast enhancement is applied to the lightness channel of the color image in HSL color space. The histogram stretching is implemented as follows:

L = (L-m)/(M-m)

where, L is the fragment intensity/lightness, m is the intensity/lightness to map to 0, M is the intensity/lightness to map to 1. The default values of m and M are the min and max taken over all fragments.

This increase the dynamic range and contrast in the LIC'd image, both of which are natuarly attenuated by the convolution process.

Values

ENHANCE_CONTRAST_OFF – don't enhance LIC or scalar colors ENHANCE_CONTRAST_LIC – enhance in LIC high-pass input and output ENHANCE_CONTRAST_COLOR – enhance after scalars are combined with LIC ENHANCE_CONTRAST_BOTH – enhance in LIC stages and after scalar colors

This feature is disabled by default.

Enumerator
ENHANCE_CONTRAST_OFF 
ENHANCE_CONTRAST_LIC 
ENHANCE_CONTRAST_COLOR 
ENHANCE_CONTRAST_BOTH 

Definition at line 217 of file vtkSurfaceLICInterface.h.

◆ anonymous enum

anonymous enum

Set/Get the color mode.

The color mode controls how scalar colors are combined with the LIC in the final image. The BLEND mode combines scalar colors with LIC intensities with proportional blending controlled by the LICIntensity parameter. The MAP mode combines scalar colors with LIC, by multiplication the HSL represntation of color's lightness.

The default is COLOR_MODE_BLEND.

Enumerator
COLOR_MODE_BLEND 
COLOR_MODE_MAP 

Definition at line 278 of file vtkSurfaceLICInterface.h.

◆ anonymous enum

anonymous enum

Select the statistical distribution of randomly generated noise values.

With uniform noise there is greater control over the range of values in the noise texture. The Default is NOISE_TYPE_GAUSSIAN.

Enumerator
NOISE_TYPE_UNIFORM 
NOISE_TYPE_GAUSSIAN 
NOISE_TYPE_PERLIN 

Definition at line 353 of file vtkSurfaceLICInterface.h.

◆ anonymous enum

anonymous enum

Control the screen space decomposition where LIC is computed.

Enumerator
COMPOSITE_INPLACE 
COMPOSITE_INPLACE_DISJOINT 
COMPOSITE_BALANCED 
COMPOSITE_AUTO 

Definition at line 431 of file vtkSurfaceLICInterface.h.

Constructor & Destructor Documentation

◆ vtkSurfaceLICInterface()

vtkSurfaceLICInterface::vtkSurfaceLICInterface ( )
protected

◆ ~vtkSurfaceLICInterface()

vtkSurfaceLICInterface::~vtkSurfaceLICInterface ( )
overrideprotected

Member Function Documentation

◆ New()

static vtkSurfaceLICInterface * vtkSurfaceLICInterface::New ( )
static

◆ IsTypeOf()

static vtkTypeBool vtkSurfaceLICInterface::IsTypeOf ( const char *  type)
static

◆ IsA()

virtual vtkTypeBool vtkSurfaceLICInterface::IsA ( const char *  name)
virtual

Return 1 if this class is the same type of (or a subclass of) the named class.

Returns 0 otherwise. This method works in combination with vtkTypeMacro found in vtkSetGet.h.

Reimplemented from vtkObjectBase.

Reimplemented in vtkPSurfaceLICInterface.

◆ SafeDownCast()

static vtkSurfaceLICInterface * vtkSurfaceLICInterface::SafeDownCast ( vtkObjectBase o)
static

◆ NewInstanceInternal()

virtual vtkObjectBase * vtkSurfaceLICInterface::NewInstanceInternal ( ) const
protectedvirtual

Reimplemented in vtkPSurfaceLICInterface.

◆ NewInstance()

vtkSurfaceLICInterface * vtkSurfaceLICInterface::NewInstance ( ) const

◆ PrintSelf()

void vtkSurfaceLICInterface::PrintSelf ( ostream &  os,
vtkIndent  indent 
)
overridevirtual

Methods invoked by print to print information about the object including superclasses.

Typically not called by the user (use Print() instead) but used in the hierarchical print process to combine the output of several classes.

Reimplemented from vtkObject.

Reimplemented in vtkPSurfaceLICInterface.

◆ SetNumberOfSteps()

void vtkSurfaceLICInterface::SetNumberOfSteps ( int  val)

Get/Set the number of integration steps in each direction.

◆ GetNumberOfSteps()

virtual int vtkSurfaceLICInterface::GetNumberOfSteps ( )
virtual

Get/Set the number of integration steps in each direction.

◆ SetStepSize()

void vtkSurfaceLICInterface::SetStepSize ( double  val)

Get/Set the step size (in pixels).

◆ GetStepSize()

virtual double vtkSurfaceLICInterface::GetStepSize ( )
virtual

Get/Set the step size (in pixels).

◆ SetNormalizeVectors()

void vtkSurfaceLICInterface::SetNormalizeVectors ( int  val)

Normalize vectors during integration.

When set(the default) the input vector field is normalized during integration, and each integration occurs over the same arclength. When not set each integration occurs over an arc length proportional to the field magnitude as is customary in traditional numerical methods. See, "Imaging Vector Fields Using Line Integral Convolution" for an axample where normalization is used. See, "Image Space Based Visualization of Unsteady Flow on Surfaces" for an example of where no normalization is used.

◆ NormalizeVectorsOn()

virtual void vtkSurfaceLICInterface::NormalizeVectorsOn ( )
virtual

Normalize vectors during integration.

When set(the default) the input vector field is normalized during integration, and each integration occurs over the same arclength. When not set each integration occurs over an arc length proportional to the field magnitude as is customary in traditional numerical methods. See, "Imaging Vector Fields Using Line Integral Convolution" for an axample where normalization is used. See, "Image Space Based Visualization of Unsteady Flow on Surfaces" for an example of where no normalization is used.

◆ NormalizeVectorsOff()

virtual void vtkSurfaceLICInterface::NormalizeVectorsOff ( )
virtual

Normalize vectors during integration.

When set(the default) the input vector field is normalized during integration, and each integration occurs over the same arclength. When not set each integration occurs over an arc length proportional to the field magnitude as is customary in traditional numerical methods. See, "Imaging Vector Fields Using Line Integral Convolution" for an axample where normalization is used. See, "Image Space Based Visualization of Unsteady Flow on Surfaces" for an example of where no normalization is used.

◆ GetNormalizeVectors()

virtual int vtkSurfaceLICInterface::GetNormalizeVectors ( )
virtual

Normalize vectors during integration.

When set(the default) the input vector field is normalized during integration, and each integration occurs over the same arclength. When not set each integration occurs over an arc length proportional to the field magnitude as is customary in traditional numerical methods. See, "Imaging Vector Fields Using Line Integral Convolution" for an axample where normalization is used. See, "Image Space Based Visualization of Unsteady Flow on Surfaces" for an example of where no normalization is used.

◆ SetMaskOnSurface()

void vtkSurfaceLICInterface::SetMaskOnSurface ( int  val)

When set MaskOnSurface computes |V| for use in the fragment masking tests on the surface.

When not set the original un-projected un-transformed |V| is used.

◆ MaskOnSurfaceOn()

virtual void vtkSurfaceLICInterface::MaskOnSurfaceOn ( )
virtual

When set MaskOnSurface computes |V| for use in the fragment masking tests on the surface.

When not set the original un-projected un-transformed |V| is used.

◆ MaskOnSurfaceOff()

virtual void vtkSurfaceLICInterface::MaskOnSurfaceOff ( )
virtual

When set MaskOnSurface computes |V| for use in the fragment masking tests on the surface.

When not set the original un-projected un-transformed |V| is used.

◆ GetMaskOnSurface()

virtual int vtkSurfaceLICInterface::GetMaskOnSurface ( )
virtual

When set MaskOnSurface computes |V| for use in the fragment masking tests on the surface.

When not set the original un-projected un-transformed |V| is used.

◆ SetMaskThreshold()

void vtkSurfaceLICInterface::SetMaskThreshold ( double  val)

The MaskThreshold controls the rendering of fragments in stagnant regions of flow.

// In these regions LIC noise texture will be masked, where |V| < MaskThreshold is satisfied. The masking process blends a the MaskColor with the scalar color of the surface proportional to MaskIntesnsity. See MaskIntensity for more information on the blending algorithm. This blending allows one control over the masking process so that masked fragments may be: highlighted (by setting a unique mask color and mask intensity > 0), made invisible with and without passing the un-convolved noise texture (by setting mask intensity 0), made to blend into the LIC.

MaskThreshold units are in the original vector space. Note that the threshold can be applied to the original vector field or to the surface projected vector field. See MaskOnSurface.

◆ GetMaskThreshold()

virtual double vtkSurfaceLICInterface::GetMaskThreshold ( )
virtual

The MaskThreshold controls the rendering of fragments in stagnant regions of flow.

// In these regions LIC noise texture will be masked, where |V| < MaskThreshold is satisfied. The masking process blends a the MaskColor with the scalar color of the surface proportional to MaskIntesnsity. See MaskIntensity for more information on the blending algorithm. This blending allows one control over the masking process so that masked fragments may be: highlighted (by setting a unique mask color and mask intensity > 0), made invisible with and without passing the un-convolved noise texture (by setting mask intensity 0), made to blend into the LIC.

MaskThreshold units are in the original vector space. Note that the threshold can be applied to the original vector field or to the surface projected vector field. See MaskOnSurface.

◆ SetMaskColor() [1/2]

void vtkSurfaceLICInterface::SetMaskColor ( double *  val)

The MaskColor is used on masked fragments.

The default of (0.5, 0.5, 0.5) makes the masked fragments look similar to the LIC'd fragments. The mask color is applied only when MaskIntensity > 0.

◆ SetMaskColor() [2/2]

void vtkSurfaceLICInterface::SetMaskColor ( double  r,
double  g,
double  b 
)
inline

The MaskColor is used on masked fragments.

The default of (0.5, 0.5, 0.5) makes the masked fragments look similar to the LIC'd fragments. The mask color is applied only when MaskIntensity > 0.

Definition at line 151 of file vtkSurfaceLICInterface.h.

◆ GetMaskColor() [1/3]

virtual double * vtkSurfaceLICInterface::GetMaskColor ( )
virtual

The MaskColor is used on masked fragments.

The default of (0.5, 0.5, 0.5) makes the masked fragments look similar to the LIC'd fragments. The mask color is applied only when MaskIntensity > 0.

◆ GetMaskColor() [2/3]

virtual void vtkSurfaceLICInterface::GetMaskColor ( double &  ,
double &  ,
double &   
)
virtual

The MaskColor is used on masked fragments.

The default of (0.5, 0.5, 0.5) makes the masked fragments look similar to the LIC'd fragments. The mask color is applied only when MaskIntensity > 0.

◆ GetMaskColor() [3/3]

virtual void vtkSurfaceLICInterface::GetMaskColor ( double  [3])
virtual

The MaskColor is used on masked fragments.

The default of (0.5, 0.5, 0.5) makes the masked fragments look similar to the LIC'd fragments. The mask color is applied only when MaskIntensity > 0.

◆ SetMaskIntensity()

void vtkSurfaceLICInterface::SetMaskIntensity ( double  val)

The MaskIntensity controls the blending of the mask color and the geometry color.

The color of masked fragments is given by:

c = maskColor * maskIntensity + geomColor * (1 - maskIntensity)

The default value of 0.0 results in the geometry color being used.

◆ GetMaskIntensity()

virtual double vtkSurfaceLICInterface::GetMaskIntensity ( )
virtual

The MaskIntensity controls the blending of the mask color and the geometry color.

The color of masked fragments is given by:

c = maskColor * maskIntensity + geomColor * (1 - maskIntensity)

The default value of 0.0 results in the geometry color being used.

◆ SetEnhancedLIC()

void vtkSurfaceLICInterface::SetEnhancedLIC ( int  val)

EnhancedLIC mean compute the LIC twice with the second pass using the edge-enhanced result of the first pass as a noise texture.

Edge enhancedment is made by a simple Laplace convolution.

◆ GetEnhancedLIC()

virtual int vtkSurfaceLICInterface::GetEnhancedLIC ( )
virtual

EnhancedLIC mean compute the LIC twice with the second pass using the edge-enhanced result of the first pass as a noise texture.

Edge enhancedment is made by a simple Laplace convolution.

◆ EnhancedLICOn()

virtual void vtkSurfaceLICInterface::EnhancedLICOn ( )
virtual

EnhancedLIC mean compute the LIC twice with the second pass using the edge-enhanced result of the first pass as a noise texture.

Edge enhancedment is made by a simple Laplace convolution.

◆ EnhancedLICOff()

virtual void vtkSurfaceLICInterface::EnhancedLICOff ( )
virtual

EnhancedLIC mean compute the LIC twice with the second pass using the edge-enhanced result of the first pass as a noise texture.

Edge enhancedment is made by a simple Laplace convolution.

◆ SetEnhanceContrast()

void vtkSurfaceLICInterface::SetEnhanceContrast ( int  val)

Enable/Disable contrast and dynamic range correction stages.

Contrast enhancement can be enabled during LIC computations (See vtkLineINtegralComvolution2D) and after the scalar colors have been combined with the LIC.

The best approach for using this feature is to enable LIC enhancement, and only if the image is to dark or dull enable COLOR enhancement.

Both stages are implemented by a histogram stretching algorithm. During LIC stages the contrast enhancement is applied to gray scale LIC image. During the scalar coloring stage the contrast enhancement is applied to the lightness channel of the color image in HSL color space. The histogram stretching is implemented as follows:

L = (L-m)/(M-m)

where, L is the fragment intensity/lightness, m is the intensity/lightness to map to 0, M is the intensity/lightness to map to 1. The default values of m and M are the min and max taken over all fragments.

This increase the dynamic range and contrast in the LIC'd image, both of which are natuarly attenuated by the convolution process.

Values

ENHANCE_CONTRAST_OFF – don't enhance LIC or scalar colors ENHANCE_CONTRAST_LIC – enhance in LIC high-pass input and output ENHANCE_CONTRAST_COLOR – enhance after scalars are combined with LIC ENHANCE_CONTRAST_BOTH – enhance in LIC stages and after scalar colors

This feature is disabled by default.

◆ GetEnhanceContrast()

virtual int vtkSurfaceLICInterface::GetEnhanceContrast ( )
virtual

Enable/Disable contrast and dynamic range correction stages.

Contrast enhancement can be enabled during LIC computations (See vtkLineINtegralComvolution2D) and after the scalar colors have been combined with the LIC.

The best approach for using this feature is to enable LIC enhancement, and only if the image is to dark or dull enable COLOR enhancement.

Both stages are implemented by a histogram stretching algorithm. During LIC stages the contrast enhancement is applied to gray scale LIC image. During the scalar coloring stage the contrast enhancement is applied to the lightness channel of the color image in HSL color space. The histogram stretching is implemented as follows:

L = (L-m)/(M-m)

where, L is the fragment intensity/lightness, m is the intensity/lightness to map to 0, M is the intensity/lightness to map to 1. The default values of m and M are the min and max taken over all fragments.

This increase the dynamic range and contrast in the LIC'd image, both of which are natuarly attenuated by the convolution process.

Values

ENHANCE_CONTRAST_OFF – don't enhance LIC or scalar colors ENHANCE_CONTRAST_LIC – enhance in LIC high-pass input and output ENHANCE_CONTRAST_COLOR – enhance after scalars are combined with LIC ENHANCE_CONTRAST_BOTH – enhance in LIC stages and after scalar colors

This feature is disabled by default.

◆ GetLowLICContrastEnhancementFactor()

virtual double vtkSurfaceLICInterface::GetLowLICContrastEnhancementFactor ( )
virtual

This feature is used to fine tune the contrast enhancement.

There are two modes AUTOMATIC and MANUAL.In AUTOMATIC mode values are provided indicating the fraction of the range to adjust M and m by, during contrast enahncement histogram stretching. M and m are the intensity/lightness values that map to 1 and 0. (see EnhanceContrast for an explanation of the mapping procedure). m and M are computed using the factors as follows:

m = min(C) + mFactor * (max(C) - min(C)) M = max(C) - MFactor * (max(C) - min(C))

the default values for mFactor and MFactor are 0 which result in m = min(C), M = max(C), taken over the entire image. Modifying mFactor and MFactor above or below zero provide control over the saturation/ de-saturation during contrast enhancement.

◆ GetHighLICContrastEnhancementFactor()

virtual double vtkSurfaceLICInterface::GetHighLICContrastEnhancementFactor ( )
virtual

This feature is used to fine tune the contrast enhancement.

There are two modes AUTOMATIC and MANUAL.In AUTOMATIC mode values are provided indicating the fraction of the range to adjust M and m by, during contrast enahncement histogram stretching. M and m are the intensity/lightness values that map to 1 and 0. (see EnhanceContrast for an explanation of the mapping procedure). m and M are computed using the factors as follows:

m = min(C) + mFactor * (max(C) - min(C)) M = max(C) - MFactor * (max(C) - min(C))

the default values for mFactor and MFactor are 0 which result in m = min(C), M = max(C), taken over the entire image. Modifying mFactor and MFactor above or below zero provide control over the saturation/ de-saturation during contrast enhancement.

◆ SetLowLICContrastEnhancementFactor()

void vtkSurfaceLICInterface::SetLowLICContrastEnhancementFactor ( double  val)

This feature is used to fine tune the contrast enhancement.

There are two modes AUTOMATIC and MANUAL.In AUTOMATIC mode values are provided indicating the fraction of the range to adjust M and m by, during contrast enahncement histogram stretching. M and m are the intensity/lightness values that map to 1 and 0. (see EnhanceContrast for an explanation of the mapping procedure). m and M are computed using the factors as follows:

m = min(C) + mFactor * (max(C) - min(C)) M = max(C) - MFactor * (max(C) - min(C))

the default values for mFactor and MFactor are 0 which result in m = min(C), M = max(C), taken over the entire image. Modifying mFactor and MFactor above or below zero provide control over the saturation/ de-saturation during contrast enhancement.

◆ SetHighLICContrastEnhancementFactor()

void vtkSurfaceLICInterface::SetHighLICContrastEnhancementFactor ( double  val)

This feature is used to fine tune the contrast enhancement.

There are two modes AUTOMATIC and MANUAL.In AUTOMATIC mode values are provided indicating the fraction of the range to adjust M and m by, during contrast enahncement histogram stretching. M and m are the intensity/lightness values that map to 1 and 0. (see EnhanceContrast for an explanation of the mapping procedure). m and M are computed using the factors as follows:

m = min(C) + mFactor * (max(C) - min(C)) M = max(C) - MFactor * (max(C) - min(C))

the default values for mFactor and MFactor are 0 which result in m = min(C), M = max(C), taken over the entire image. Modifying mFactor and MFactor above or below zero provide control over the saturation/ de-saturation during contrast enhancement.

◆ GetLowColorContrastEnhancementFactor()

virtual double vtkSurfaceLICInterface::GetLowColorContrastEnhancementFactor ( )
virtual

This feature is used to fine tune the contrast enhancement.

There are two modes AUTOMATIC and MANUAL.In AUTOMATIC mode values are provided indicating the fraction of the range to adjust M and m by, during contrast enahncement histogram stretching. M and m are the intensity/lightness values that map to 1 and 0. (see EnhanceContrast for an explanation of the mapping procedure). m and M are computed using the factors as follows:

m = min(C) + mFactor * (max(C) - min(C)) M = max(C) - MFactor * (max(C) - min(C))

the default values for mFactor and MFactor are 0 which result in m = min(C), M = max(C), taken over the entire image. Modifying mFactor and MFactor above or below zero provide control over the saturation/ de-saturation during contrast enhancement.

◆ GetHighColorContrastEnhancementFactor()

virtual double vtkSurfaceLICInterface::GetHighColorContrastEnhancementFactor ( )
virtual

This feature is used to fine tune the contrast enhancement.

There are two modes AUTOMATIC and MANUAL.In AUTOMATIC mode values are provided indicating the fraction of the range to adjust M and m by, during contrast enahncement histogram stretching. M and m are the intensity/lightness values that map to 1 and 0. (see EnhanceContrast for an explanation of the mapping procedure). m and M are computed using the factors as follows:

m = min(C) + mFactor * (max(C) - min(C)) M = max(C) - MFactor * (max(C) - min(C))

the default values for mFactor and MFactor are 0 which result in m = min(C), M = max(C), taken over the entire image. Modifying mFactor and MFactor above or below zero provide control over the saturation/ de-saturation during contrast enhancement.

◆ SetLowColorContrastEnhancementFactor()

void vtkSurfaceLICInterface::SetLowColorContrastEnhancementFactor ( double  val)

This feature is used to fine tune the contrast enhancement.

There are two modes AUTOMATIC and MANUAL.In AUTOMATIC mode values are provided indicating the fraction of the range to adjust M and m by, during contrast enahncement histogram stretching. M and m are the intensity/lightness values that map to 1 and 0. (see EnhanceContrast for an explanation of the mapping procedure). m and M are computed using the factors as follows:

m = min(C) + mFactor * (max(C) - min(C)) M = max(C) - MFactor * (max(C) - min(C))

the default values for mFactor and MFactor are 0 which result in m = min(C), M = max(C), taken over the entire image. Modifying mFactor and MFactor above or below zero provide control over the saturation/ de-saturation during contrast enhancement.

◆ SetHighColorContrastEnhancementFactor()

void vtkSurfaceLICInterface::SetHighColorContrastEnhancementFactor ( double  val)

This feature is used to fine tune the contrast enhancement.

There are two modes AUTOMATIC and MANUAL.In AUTOMATIC mode values are provided indicating the fraction of the range to adjust M and m by, during contrast enahncement histogram stretching. M and m are the intensity/lightness values that map to 1 and 0. (see EnhanceContrast for an explanation of the mapping procedure). m and M are computed using the factors as follows:

m = min(C) + mFactor * (max(C) - min(C)) M = max(C) - MFactor * (max(C) - min(C))

the default values for mFactor and MFactor are 0 which result in m = min(C), M = max(C), taken over the entire image. Modifying mFactor and MFactor above or below zero provide control over the saturation/ de-saturation during contrast enhancement.

◆ SetAntiAlias()

void vtkSurfaceLICInterface::SetAntiAlias ( int  val)

Enable/Disable the anti-aliasing pass.

This optional pass (disabled by default) can be enabled to reduce jagged patterns in the final LIC image. Values greater than 0 control the number of iterations, 1 is typically sufficient.

◆ AntiAliasOn()

virtual void vtkSurfaceLICInterface::AntiAliasOn ( )
virtual

Enable/Disable the anti-aliasing pass.

This optional pass (disabled by default) can be enabled to reduce jagged patterns in the final LIC image. Values greater than 0 control the number of iterations, 1 is typically sufficient.

◆ AntiAliasOff()

virtual void vtkSurfaceLICInterface::AntiAliasOff ( )
virtual

Enable/Disable the anti-aliasing pass.

This optional pass (disabled by default) can be enabled to reduce jagged patterns in the final LIC image. Values greater than 0 control the number of iterations, 1 is typically sufficient.

◆ GetAntiAlias()

virtual int vtkSurfaceLICInterface::GetAntiAlias ( )
virtual

Enable/Disable the anti-aliasing pass.

This optional pass (disabled by default) can be enabled to reduce jagged patterns in the final LIC image. Values greater than 0 control the number of iterations, 1 is typically sufficient.

◆ SetColorMode()

void vtkSurfaceLICInterface::SetColorMode ( int  val)

Set/Get the color mode.

The color mode controls how scalar colors are combined with the LIC in the final image. The BLEND mode combines scalar colors with LIC intensities with proportional blending controlled by the LICIntensity parameter. The MAP mode combines scalar colors with LIC, by multiplication the HSL represntation of color's lightness.

The default is COLOR_MODE_BLEND.

◆ GetColorMode()

virtual int vtkSurfaceLICInterface::GetColorMode ( )
virtual

Set/Get the color mode.

The color mode controls how scalar colors are combined with the LIC in the final image. The BLEND mode combines scalar colors with LIC intensities with proportional blending controlled by the LICIntensity parameter. The MAP mode combines scalar colors with LIC, by multiplication the HSL represntation of color's lightness.

The default is COLOR_MODE_BLEND.

◆ SetLICIntensity()

void vtkSurfaceLICInterface::SetLICIntensity ( double  val)

Factor used when blend mode is set to COLOR_MODE_BLEND.

This controls the contribution of the LIC in the final output image as follows:

c = LIC * LICIntensity + scalar * (1 - LICIntensity);

0.0 produces same result as disabling LIC altogether, while 1.0 implies show LIC result alone.

◆ GetLICIntensity()

virtual double vtkSurfaceLICInterface::GetLICIntensity ( )
virtual

Factor used when blend mode is set to COLOR_MODE_BLEND.

This controls the contribution of the LIC in the final output image as follows:

c = LIC * LICIntensity + scalar * (1 - LICIntensity);

0.0 produces same result as disabling LIC altogether, while 1.0 implies show LIC result alone.

◆ SetMapModeBias()

void vtkSurfaceLICInterface::SetMapModeBias ( double  val)

Factor used when blend mode is set to COLOR_MODE_MAP.

This adds a bias to the LIC image. The purpose of this is to adjust the brightness when a brighter image is desired. The default of 0.0 results in no change. Values gretaer than 0.0 will brighten the image while values less than 0.0 darken the image.

◆ GetMapModeBias()

virtual double vtkSurfaceLICInterface::GetMapModeBias ( )
virtual

Factor used when blend mode is set to COLOR_MODE_MAP.

This adds a bias to the LIC image. The purpose of this is to adjust the brightness when a brighter image is desired. The default of 0.0 results in no change. Values gretaer than 0.0 will brighten the image while values less than 0.0 darken the image.

◆ SetNoiseDataSet()

void vtkSurfaceLICInterface::SetNoiseDataSet ( vtkImageData data)

Set the data containing a noise array as active scalars.

Active scalars array will be converted into a texture for use as noise in the LIC process. Noise datasets are expected to be gray scale.

◆ GetNoiseDataSet()

vtkImageData * vtkSurfaceLICInterface::GetNoiseDataSet ( )

Set the data containing a noise array as active scalars.

Active scalars array will be converted into a texture for use as noise in the LIC process. Noise datasets are expected to be gray scale.

◆ SetGenerateNoiseTexture()

void vtkSurfaceLICInterface::SetGenerateNoiseTexture ( int  shouldGenerate)

Set/Get the noise texture source.

When not set the default 200x200 white noise texture is used (see VTKData/Data/Data/noise.png). When set a noise texture is generated based on the following parameters:

NoiseType - select noise type. Gaussian, Uniform, etc NoiseTextureSize - number of pixels in square noise texture(side) NoiseGrainSize - number of pixels each noise value spans(side) MinNoiseValue - minimum noise color >=0 && < MaxNoiseValue MaxNoiseValue - maximum noise color <=1 ** > MinNoiseValue NumberOfNoiseLevels - number of discrete noise colors ImpulseNoiseProbability - impulse noise is generated when < 1 ImpulseNoiseBackgroundValue - the background color for untouched pixels NoiseGeneratorSeed - seed the random number generators

Changing the noise texture gives one greater control over the look of the final image. The default is 0 which results in the use of a static 200x200 Gaussian noise texture. See VTKData/Data/Data/noise.png.

◆ GetGenerateNoiseTexture()

virtual int vtkSurfaceLICInterface::GetGenerateNoiseTexture ( )
virtual

Set/Get the noise texture source.

When not set the default 200x200 white noise texture is used (see VTKData/Data/Data/noise.png). When set a noise texture is generated based on the following parameters:

NoiseType - select noise type. Gaussian, Uniform, etc NoiseTextureSize - number of pixels in square noise texture(side) NoiseGrainSize - number of pixels each noise value spans(side) MinNoiseValue - minimum noise color >=0 && < MaxNoiseValue MaxNoiseValue - maximum noise color <=1 ** > MinNoiseValue NumberOfNoiseLevels - number of discrete noise colors ImpulseNoiseProbability - impulse noise is generated when < 1 ImpulseNoiseBackgroundValue - the background color for untouched pixels NoiseGeneratorSeed - seed the random number generators

Changing the noise texture gives one greater control over the look of the final image. The default is 0 which results in the use of a static 200x200 Gaussian noise texture. See VTKData/Data/Data/noise.png.

◆ SetNoiseType()

void vtkSurfaceLICInterface::SetNoiseType ( int  type)

Select the statistical distribution of randomly generated noise values.

With uniform noise there is greater control over the range of values in the noise texture. The Default is NOISE_TYPE_GAUSSIAN.

◆ GetNoiseType()

virtual int vtkSurfaceLICInterface::GetNoiseType ( )
virtual

Select the statistical distribution of randomly generated noise values.

With uniform noise there is greater control over the range of values in the noise texture. The Default is NOISE_TYPE_GAUSSIAN.

◆ SetNoiseTextureSize()

void vtkSurfaceLICInterface::SetNoiseTextureSize ( int  length)

Set/Get the side length in pixels of the noise texture.

The texture will be length^2 pixels in area.

◆ GetNoiseTextureSize()

virtual int vtkSurfaceLICInterface::GetNoiseTextureSize ( )
virtual

Set/Get the side length in pixels of the noise texture.

The texture will be length^2 pixels in area.

◆ SetNoiseGrainSize()

void vtkSurfaceLICInterface::SetNoiseGrainSize ( int  val)

Each noise value will be length^2 pixels in area.

◆ GetNoiseGrainSize()

virtual int vtkSurfaceLICInterface::GetNoiseGrainSize ( )
virtual

Each noise value will be length^2 pixels in area.

◆ SetMinNoiseValue()

void vtkSurfaceLICInterface::SetMinNoiseValue ( double  val)

Set/Get the minimum and mximum gray scale values that the generated noise can take on.

The generated noise will be in the range of MinNoiseValue to MaxNoiseValue. Values are clamped within 0 to 1. MinNoiseValue must be less than MaxNoiseValue.

◆ SetMaxNoiseValue()

void vtkSurfaceLICInterface::SetMaxNoiseValue ( double  val)

Set/Get the minimum and mximum gray scale values that the generated noise can take on.

The generated noise will be in the range of MinNoiseValue to MaxNoiseValue. Values are clamped within 0 to 1. MinNoiseValue must be less than MaxNoiseValue.

◆ GetMinNoiseValue()

virtual double vtkSurfaceLICInterface::GetMinNoiseValue ( )
virtual

Set/Get the minimum and mximum gray scale values that the generated noise can take on.

The generated noise will be in the range of MinNoiseValue to MaxNoiseValue. Values are clamped within 0 to 1. MinNoiseValue must be less than MaxNoiseValue.

◆ GetMaxNoiseValue()

virtual double vtkSurfaceLICInterface::GetMaxNoiseValue ( )
virtual

Set/Get the minimum and mximum gray scale values that the generated noise can take on.

The generated noise will be in the range of MinNoiseValue to MaxNoiseValue. Values are clamped within 0 to 1. MinNoiseValue must be less than MaxNoiseValue.

◆ SetNumberOfNoiseLevels()

void vtkSurfaceLICInterface::SetNumberOfNoiseLevels ( int  val)

Set/Get the number of discrete values a noise pixel may take on.

Default 1024.

◆ GetNumberOfNoiseLevels()

virtual int vtkSurfaceLICInterface::GetNumberOfNoiseLevels ( )
virtual

Set/Get the number of discrete values a noise pixel may take on.

Default 1024.

◆ SetImpulseNoiseProbability()

void vtkSurfaceLICInterface::SetImpulseNoiseProbability ( double  val)

Control the density of the noise.

A value of 1.0 produces uniform random noise while values < 1.0 produce impulse noise with the given probability.

◆ GetImpulseNoiseProbability()

virtual double vtkSurfaceLICInterface::GetImpulseNoiseProbability ( )
virtual

Control the density of the noise.

A value of 1.0 produces uniform random noise while values < 1.0 produce impulse noise with the given probability.

◆ SetImpulseNoiseBackgroundValue()

void vtkSurfaceLICInterface::SetImpulseNoiseBackgroundValue ( double  val)

The color to use for untouched pixels when impulse noise probability < 1.

◆ GetImpulseNoiseBackgroundValue()

virtual double vtkSurfaceLICInterface::GetImpulseNoiseBackgroundValue ( )
virtual

The color to use for untouched pixels when impulse noise probability < 1.

◆ SetNoiseGeneratorSeed()

void vtkSurfaceLICInterface::SetNoiseGeneratorSeed ( int  val)

Set/Get the seed value used by the random number generator.

◆ GetNoiseGeneratorSeed()

virtual int vtkSurfaceLICInterface::GetNoiseGeneratorSeed ( )
virtual

Set/Get the seed value used by the random number generator.

◆ SetCompositeStrategy()

void vtkSurfaceLICInterface::SetCompositeStrategy ( int  val)

Control the screen space decomposition where LIC is computed.

◆ GetCompositeStrategy()

virtual int vtkSurfaceLICInterface::GetCompositeStrategy ( )
virtual

Control the screen space decomposition where LIC is computed.

◆ IsSupported()

static bool vtkSurfaceLICInterface::IsSupported ( vtkRenderWindow context)
static

Returns true if the rendering context supports extensions needed by this painter.

◆ WriteTimerLog()

virtual void vtkSurfaceLICInterface::WriteTimerLog ( const char *  )
inlinevirtual

Methods used for parallel benchmarks.

Use cmake to define vtkSurfaceLICMapperTIME to enable benchmarks. During each update timing information is stored, it can be written to disk by calling WriteLog.

Definition at line 454 of file vtkSurfaceLICInterface.h.

◆ ShallowCopy()

void vtkSurfaceLICInterface::ShallowCopy ( vtkSurfaceLICInterface m)

Make a shallow copy of this interface.

◆ ReleaseGraphicsResources()

virtual void vtkSurfaceLICInterface::ReleaseGraphicsResources ( vtkWindow win)
virtual

Release any graphics resources that are being consumed by this mapper.

The parameter window could be used to determine which graphic resources to release. In this case, releases the display lists.

◆ CanRenderSurfaceLIC()

bool vtkSurfaceLICInterface::CanRenderSurfaceLIC ( vtkActor actor)

Returns true when rendering LIC is possible.

◆ ValidateContext()

void vtkSurfaceLICInterface::ValidateContext ( vtkRenderer renderer)

Look for changes that would trigger stage updates.

◆ CreateCommunicator() [1/2]

virtual vtkPainterCommunicator * vtkSurfaceLICInterface::CreateCommunicator ( int  )
virtual

Creates a new communicator with/without the calling processes as indicated by the passed in flag, if not 0 the calling process is included in the new communicator.

In parallel this call is mpi collective on the world communicator. In serial this is a no-op.

Reimplemented in vtkPSurfaceLICInterface.

◆ CreateCommunicator() [2/2]

void vtkSurfaceLICInterface::CreateCommunicator ( vtkRenderer ,
vtkActor ,
vtkDataObject data 
)

Creates a new communicator for internal use based on this rank's visible data.

◆ GetCommunicator()

vtkPainterCommunicator * vtkSurfaceLICInterface::GetCommunicator ( )

◆ UpdateCommunicator()

void vtkSurfaceLICInterface::UpdateCommunicator ( vtkRenderer renderer,
vtkActor actor,
vtkDataObject data 
)

Called from a mapper, does what is needed to make sure the communicators are ready.

◆ SetHasVectors()

void vtkSurfaceLICInterface::SetHasVectors ( bool  val)

Does the data have vectors which we require.

◆ GetHasVectors()

bool vtkSurfaceLICInterface::GetHasVectors ( )

Does the data have vectors which we require.

◆ InitializeResources()

void vtkSurfaceLICInterface::InitializeResources ( )

resoucre allocators

◆ PrepareForGeometry()

void vtkSurfaceLICInterface::PrepareForGeometry ( )

◆ CompletedGeometry()

void vtkSurfaceLICInterface::CompletedGeometry ( )

◆ GatherVectors()

void vtkSurfaceLICInterface::GatherVectors ( )

◆ ApplyLIC()

void vtkSurfaceLICInterface::ApplyLIC ( )

◆ CombineColorsAndLIC()

void vtkSurfaceLICInterface::CombineColorsAndLIC ( )

◆ CopyToScreen()

void vtkSurfaceLICInterface::CopyToScreen ( )

◆ GetGlobalMinMax()

virtual void vtkSurfaceLICInterface::GetGlobalMinMax ( vtkPainterCommunicator ,
float &  ,
float &   
)
inlinevirtual

Get the min/max across all ranks.

min/max are in/out. In serial operation this is a no-op, in parallel it is a global collective reduction.

Reimplemented in vtkPSurfaceLICInterface.

Definition at line 525 of file vtkSurfaceLICInterface.h.

◆ SetEnable()

virtual void vtkSurfaceLICInterface::SetEnable ( int  )
virtual

Enable/Disable LIC.

◆ GetEnable()

virtual int vtkSurfaceLICInterface::GetEnable ( )
virtual

Enable/Disable LIC.

◆ EnableOn()

virtual void vtkSurfaceLICInterface::EnableOn ( )
virtual

Enable/Disable LIC.

◆ EnableOff()

virtual void vtkSurfaceLICInterface::EnableOff ( )
virtual

Enable/Disable LIC.

◆ UpdateNoiseImage()

void vtkSurfaceLICInterface::UpdateNoiseImage ( vtkRenderWindow renWin)
protected

Updates the noise texture, downsampling by the requested sample rate.

◆ NeedToUpdateCommunicator()

virtual bool vtkSurfaceLICInterface::NeedToUpdateCommunicator ( )
protectedvirtual

Return false if stage can be skipped.

Reimplemented in vtkPSurfaceLICInterface.

◆ NeedToRenderGeometry()

bool vtkSurfaceLICInterface::NeedToRenderGeometry ( vtkRenderer renderer,
vtkActor actor 
)
protected

Return false if stage can be skipped.

◆ NeedToGatherVectors()

bool vtkSurfaceLICInterface::NeedToGatherVectors ( )
protected

Return false if stage can be skipped.

◆ NeedToComputeLIC()

bool vtkSurfaceLICInterface::NeedToComputeLIC ( )
protected

Return false if stage can be skipped.

◆ NeedToColorLIC()

bool vtkSurfaceLICInterface::NeedToColorLIC ( )
protected

Return false if stage can be skipped.

◆ SetUpdateAll()

void vtkSurfaceLICInterface::SetUpdateAll ( )
protected

Return false if stage can be skipped.

Member Data Documentation

◆ Enable

int vtkSurfaceLICInterface::Enable
protected

Definition at line 557 of file vtkSurfaceLICInterface.h.

◆ NumberOfSteps

int vtkSurfaceLICInterface::NumberOfSteps
protected

Definition at line 560 of file vtkSurfaceLICInterface.h.

◆ StepSize

double vtkSurfaceLICInterface::StepSize
protected

Definition at line 561 of file vtkSurfaceLICInterface.h.

◆ NormalizeVectors

int vtkSurfaceLICInterface::NormalizeVectors
protected

Definition at line 562 of file vtkSurfaceLICInterface.h.

◆ EnhancedLIC

int vtkSurfaceLICInterface::EnhancedLIC
protected

Definition at line 564 of file vtkSurfaceLICInterface.h.

◆ EnhanceContrast

int vtkSurfaceLICInterface::EnhanceContrast
protected

Definition at line 565 of file vtkSurfaceLICInterface.h.

◆ LowLICContrastEnhancementFactor

double vtkSurfaceLICInterface::LowLICContrastEnhancementFactor
protected

Definition at line 566 of file vtkSurfaceLICInterface.h.

◆ HighLICContrastEnhancementFactor

double vtkSurfaceLICInterface::HighLICContrastEnhancementFactor
protected

Definition at line 567 of file vtkSurfaceLICInterface.h.

◆ LowColorContrastEnhancementFactor

double vtkSurfaceLICInterface::LowColorContrastEnhancementFactor
protected

Definition at line 568 of file vtkSurfaceLICInterface.h.

◆ HighColorContrastEnhancementFactor

double vtkSurfaceLICInterface::HighColorContrastEnhancementFactor
protected

Definition at line 569 of file vtkSurfaceLICInterface.h.

◆ AntiAlias

int vtkSurfaceLICInterface::AntiAlias
protected

Definition at line 570 of file vtkSurfaceLICInterface.h.

◆ MaskOnSurface

int vtkSurfaceLICInterface::MaskOnSurface
protected

Definition at line 572 of file vtkSurfaceLICInterface.h.

◆ MaskThreshold

double vtkSurfaceLICInterface::MaskThreshold
protected

Definition at line 573 of file vtkSurfaceLICInterface.h.

◆ MaskIntensity

double vtkSurfaceLICInterface::MaskIntensity
protected

Definition at line 574 of file vtkSurfaceLICInterface.h.

◆ MaskColor

double vtkSurfaceLICInterface::MaskColor[3]
protected

Definition at line 575 of file vtkSurfaceLICInterface.h.

◆ ColorMode

int vtkSurfaceLICInterface::ColorMode
protected

Definition at line 577 of file vtkSurfaceLICInterface.h.

◆ LICIntensity

double vtkSurfaceLICInterface::LICIntensity
protected

Definition at line 578 of file vtkSurfaceLICInterface.h.

◆ MapModeBias

double vtkSurfaceLICInterface::MapModeBias
protected

Definition at line 579 of file vtkSurfaceLICInterface.h.

◆ GenerateNoiseTexture

int vtkSurfaceLICInterface::GenerateNoiseTexture
protected

Definition at line 581 of file vtkSurfaceLICInterface.h.

◆ NoiseType

int vtkSurfaceLICInterface::NoiseType
protected

Definition at line 582 of file vtkSurfaceLICInterface.h.

◆ NoiseTextureSize

int vtkSurfaceLICInterface::NoiseTextureSize
protected

Definition at line 583 of file vtkSurfaceLICInterface.h.

◆ NoiseGrainSize

int vtkSurfaceLICInterface::NoiseGrainSize
protected

Definition at line 584 of file vtkSurfaceLICInterface.h.

◆ MinNoiseValue

double vtkSurfaceLICInterface::MinNoiseValue
protected

Definition at line 585 of file vtkSurfaceLICInterface.h.

◆ MaxNoiseValue

double vtkSurfaceLICInterface::MaxNoiseValue
protected

Definition at line 586 of file vtkSurfaceLICInterface.h.

◆ NumberOfNoiseLevels

int vtkSurfaceLICInterface::NumberOfNoiseLevels
protected

Definition at line 587 of file vtkSurfaceLICInterface.h.

◆ ImpulseNoiseProbability

double vtkSurfaceLICInterface::ImpulseNoiseProbability
protected

Definition at line 588 of file vtkSurfaceLICInterface.h.

◆ ImpulseNoiseBackgroundValue

double vtkSurfaceLICInterface::ImpulseNoiseBackgroundValue
protected

Definition at line 589 of file vtkSurfaceLICInterface.h.

◆ NoiseGeneratorSeed

int vtkSurfaceLICInterface::NoiseGeneratorSeed
protected

Definition at line 590 of file vtkSurfaceLICInterface.h.

◆ AlwaysUpdate

int vtkSurfaceLICInterface::AlwaysUpdate
protected

Definition at line 592 of file vtkSurfaceLICInterface.h.

◆ CompositeStrategy

int vtkSurfaceLICInterface::CompositeStrategy
protected

Definition at line 593 of file vtkSurfaceLICInterface.h.

◆ Internals

vtkSurfaceLICHelper* vtkSurfaceLICInterface::Internals
protected

Definition at line 595 of file vtkSurfaceLICInterface.h.


The documentation for this class was generated from the following file: