VTK  9.1.0
vtkUnstructuredGridBunykRayCastFunction.h
Go to the documentation of this file.
1/*=========================================================================
2
3 Program: Visualization Toolkit
4 Module: vtkUnstructuredGridBunykRayCastFunction.h
5
6 Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
7 All rights reserved.
8 See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
9
10 This software is distributed WITHOUT ANY WARRANTY; without even
11 the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
12 PURPOSE. See the above copyright notice for more information.
13
14=========================================================================*/
15
60#ifndef vtkUnstructuredGridBunykRayCastFunction_h
61#define vtkUnstructuredGridBunykRayCastFunction_h
62
63#include "vtkRenderingVolumeModule.h" // For export macro
65
66class vtkRenderer;
67class vtkVolume;
69class vtkMatrix4x4;
73class vtkIdList;
74class vtkDoubleArray;
75class vtkDataArray;
76
77// We manage the memory for the list of intersections ourself - this is the
78// storage used. We keep 10,000 elements in each array, and we can have up to
79// 1,000 arrays.
80#define VTK_BUNYKRCF_MAX_ARRAYS 10000
81#define VTK_BUNYKRCF_ARRAY_SIZE 10000
82
83class VTKRENDERINGVOLUME_EXPORT vtkUnstructuredGridBunykRayCastFunction
85{
86public:
89 void PrintSelf(ostream& os, vtkIndent indent) override;
90
94 void Initialize(vtkRenderer* ren, vtkVolume* vol) override;
95
99 void Finalize() override;
100
103
104 // Used to store each triangle - made public because of the
105 // templated function
107 {
108 public:
109 vtkIdType PointIndex[3];
110 vtkIdType ReferredByTetra[2];
111 double P1X, P1Y;
112 double P2X, P2Y;
114 double A, B, C, D;
116 };
117
118 // Used to store each intersection for the pixel rays - made
119 // public because of the templated function
121 {
122 public:
124 double Z;
126 };
127
132 int InTriangle(double x, double y, Triangle* triPtr);
133
137 double* GetPoints() { return this->Points; }
138
140
143 vtkGetObjectMacro(ViewToWorldMatrix, vtkMatrix4x4);
145
147
150 vtkGetVectorMacro(ImageOrigin, int, 2);
152
154
157 vtkGetVectorMacro(ImageViewportSize, int, 2);
159
163 Triangle** GetTetraTriangles() { return this->TetraTriangles; }
164
169 {
170 return this->Image[y * this->ImageSize[0] + x];
171 }
172
173protected:
176
177 // These are cached during the initialize method so that they do not
178 // need to be passed into subsequent CastRay calls.
182
183 // Computed during the initialize method - if something is
184 // wrong (no mapper, no volume, no input, etc.) then no rendering
185 // will actually be performed.
186 int Valid;
187
188 // These are the transformed points
190 double* Points;
191
192 // This is the matrix that will take a transformed point back
193 // to world coordinates
195
196 // This is the intersection list per pixel in the image
198
199 // This is the size of the image we are computing (which does
200 // not need to match the screen size)
201 int ImageSize[2];
202
203 // Since we may only be computing a subregion of the "full" image,
204 // this is the origin of the region we are computing. We must
205 // subtract this origin from any pixel (x,y) locations before
206 // accessing the pixel in this->Image (which represents only the
207 // subregion)
208 int ImageOrigin[2];
209
210 // This is the full size of the image
211 int ImageViewportSize[2];
212
213 // These are values saved for the building of the TriangleList. Basically
214 // we need to check if the data has changed in some way.
217
218 // This is a memory intensive algorithm! For each tetra in the
219 // input data we create up to 4 triangles (we don't create duplicates)
220 // This is the TriangleList. Then, for each tetra we keep track of
221 // the pointer to each of its four triangles - this is the
222 // TetraTriangles. We also keep a duplicate list of points
223 // (transformed into view space) - these are the Points.
226
228
229 // Compute whether a boundary triangle is front facing by
230 // looking at the fourth point in the tetra to see if it is
231 // in front (triangle is backfacing) or behind (triangle is
232 // front facing) the plane containing the triangle.
233 int IsTriangleFrontFacing(Triangle* triPtr, vtkIdType tetraIndex);
234
235 // The image contains lists of intersections per pixel - we
236 // need to clear this during the initialization phase for each
237 // render.
239
240 // This is the memory buffer used to build the intersection
241 // lists. We do our own memory management here because allocating
242 // a bunch of small elements during rendering is too slow.
244 int IntersectionBufferCount[VTK_BUNYKRCF_MAX_ARRAYS];
245
246 // This method replaces new for creating a new element - it
247 // returns one from the big block already allocated (it
248 // allocates another big block if necessary)
250
251 // This method is used during the initialization process to
252 // check the validity of the objects - missing information
253 // such as the volume, renderer, mapper, etc. will be flagged
254 // and reported.
256
257 // This method is used during the initialization process to
258 // transform the points to view coordinates
260
261 // This method is used during the initialization process to
262 // create the list of triangles if the data has changed
264
265 // This method is used during the initialization process to
266 // update the view dependent information in the triangle list
268
269 // This method is used during the initialization process to
270 // compute the intersections for each pixel with the boundary
271 // triangles.
273
274private:
276 void operator=(const vtkUnstructuredGridBunykRayCastFunction&) = delete;
277};
278
279#endif
Defines a transfer function for mapping a property to an RGB color value.
abstract superclass for arrays of numeric data
Definition: vtkDataArray.h:159
dynamic, self-adjusting array of double
list of point or cell ids
Definition: vtkIdList.h:140
a simple class to control print indentation
Definition: vtkIndent.h:113
represent and manipulate 4x4 transformation matrices
Definition: vtkMatrix4x4.h:145
Defines a 1D piecewise function.
abstract specification for renderers
Definition: vtkRenderer.h:182
record modification and/or execution time
Definition: vtkTimeStamp.h:52
dataset represents arbitrary combinations of all possible cell types.
int CheckValidity(vtkRenderer *ren, vtkVolume *vol)
static vtkUnstructuredGridBunykRayCastFunction * New()
vtkUnstructuredGridVolumeRayCastIterator * NewIterator() override
Returns a new object that will iterate over all the intersections of a ray with the cells of the inpu...
void PrintSelf(ostream &os, vtkIndent indent) override
Methods invoked by print to print information about the object including superclasses.
Triangle ** GetTetraTriangles()
Access to an internal structure for the templated method.
void Finalize() override
Called by the ray cast mapper at the end of rendering.
int IsTriangleFrontFacing(Triangle *triPtr, vtkIdType tetraIndex)
void Initialize(vtkRenderer *ren, vtkVolume *vol) override
Called by the ray cast mapper at the start of rendering.
int InTriangle(double x, double y, Triangle *triPtr)
Is the point x, y, in the given triangle? Public for access from the templated function.
double * GetPoints()
Access to an internal structure for the templated method.
Intersection * GetIntersectionList(int x, int y)
Access to an internal structure for the templated method.
vtkUnstructuredGridVolumeRayCastIterator is a superclass for iterating over the intersections of a vi...
A software mapper for unstructured volumes.
represents a volume (data & properties) in a rendered scene
Definition: vtkVolume.h:144
int vtkIdType
Definition: vtkType.h:332
#define VTK_NEWINSTANCE