VTK
|
Integrate a set of ordinary differential equations (initial value problem) in time. More...
#include <vtkInitialValueProblemSolver.h>
Public Types | |
enum | ErrorCodes { OUT_OF_DOMAIN = 1, NOT_INITIALIZED = 2, UNEXPECTED_VALUE = 3 } |
typedef vtkObject | Superclass |
Public Member Functions | |
virtual vtkTypeBool | IsA (const char *type) |
Return 1 if this class is the same type of (or a subclass of) the named class. More... | |
vtkInitialValueProblemSolver * | NewInstance () const |
void | PrintSelf (ostream &os, vtkIndent indent) override |
Methods invoked by print to print information about the object including superclasses. More... | |
virtual vtkTypeBool | IsAdaptive () |
Returns 1 if the solver uses adaptive stepsize control, 0 otherwise. More... | |
virtual int | ComputeNextStep (double *xprev, double *xnext, double t, double &delT, double maxError, double &error) |
Given initial values, xprev , initial time, t and a requested time interval, delT calculate values of x at t+delTActual (xnext). More... | |
virtual int | ComputeNextStep (double *xprev, double *dxprev, double *xnext, double t, double &delT, double maxError, double &error) |
Given initial values, xprev , initial time, t and a requested time interval, delT calculate values of x at t+delTActual (xnext). More... | |
virtual int | ComputeNextStep (double *xprev, double *xnext, double t, double &delT, double &delTActual, double minStep, double maxStep, double maxError, double &error) |
Given initial values, xprev , initial time, t and a requested time interval, delT calculate values of x at t+delTActual (xnext). More... | |
virtual int | ComputeNextStep (double *xprev, double *dxprev, double *xnext, double t, double &delT, double &delTActual, double minStep, double maxStep, double maxError, double &error)=0 |
Given initial values, xprev , initial time, t and a requested time interval, delT calculate values of x at t+delTActual (xnext). More... | |
virtual void | SetFunctionSet (vtkFunctionSet *functionset) |
Set / get the dataset used for the implicit function evaluation. More... | |
virtual vtkFunctionSet * | GetFunctionSet () |
Set / get the dataset used for the implicit function evaluation. More... | |
Public Member Functions inherited from vtkObject | |
vtkBaseTypeMacro (vtkObject, vtkObjectBase) | |
virtual void | DebugOn () |
Turn debugging output on. More... | |
virtual void | DebugOff () |
Turn debugging output off. More... | |
bool | GetDebug () |
Get the value of the debug flag. More... | |
void | SetDebug (bool debugFlag) |
Set the value of the debug flag. More... | |
virtual void | Modified () |
Update the modification time for this object. More... | |
virtual vtkMTimeType | GetMTime () |
Return this object's modified time. More... | |
void | RemoveObserver (unsigned long tag) |
void | RemoveObservers (unsigned long event) |
void | RemoveObservers (const char *event) |
void | RemoveAllObservers () |
vtkTypeBool | HasObserver (unsigned long event) |
vtkTypeBool | HasObserver (const char *event) |
int | InvokeEvent (unsigned long event) |
int | InvokeEvent (const char *event) |
unsigned long | AddObserver (unsigned long event, vtkCommand *, float priority=0.0f) |
Allow people to add/remove/invoke observers (callbacks) to any VTK object. More... | |
unsigned long | AddObserver (const char *event, vtkCommand *, float priority=0.0f) |
Allow people to add/remove/invoke observers (callbacks) to any VTK object. More... | |
vtkCommand * | GetCommand (unsigned long tag) |
Allow people to add/remove/invoke observers (callbacks) to any VTK object. More... | |
void | RemoveObserver (vtkCommand *) |
Allow people to add/remove/invoke observers (callbacks) to any VTK object. More... | |
void | RemoveObservers (unsigned long event, vtkCommand *) |
Allow people to add/remove/invoke observers (callbacks) to any VTK object. More... | |
void | RemoveObservers (const char *event, vtkCommand *) |
Allow people to add/remove/invoke observers (callbacks) to any VTK object. More... | |
vtkTypeBool | HasObserver (unsigned long event, vtkCommand *) |
Allow people to add/remove/invoke observers (callbacks) to any VTK object. More... | |
vtkTypeBool | HasObserver (const char *event, vtkCommand *) |
Allow people to add/remove/invoke observers (callbacks) to any VTK object. More... | |
template<class U , class T > | |
unsigned long | AddObserver (unsigned long event, U observer, void(T::*callback)(), float priority=0.0f) |
Overloads to AddObserver that allow developers to add class member functions as callbacks for events. More... | |
template<class U , class T > | |
unsigned long | AddObserver (unsigned long event, U observer, void(T::*callback)(vtkObject *, unsigned long, void *), float priority=0.0f) |
Overloads to AddObserver that allow developers to add class member functions as callbacks for events. More... | |
template<class U , class T > | |
unsigned long | AddObserver (unsigned long event, U observer, bool(T::*callback)(vtkObject *, unsigned long, void *), float priority=0.0f) |
Allow user to set the AbortFlagOn() with the return value of the callback method. More... | |
int | InvokeEvent (unsigned long event, void *callData) |
This method invokes an event and return whether the event was aborted or not. More... | |
int | InvokeEvent (const char *event, void *callData) |
This method invokes an event and return whether the event was aborted or not. More... | |
Public Member Functions inherited from vtkObjectBase | |
const char * | GetClassName () const |
Return the class name as a string. More... | |
virtual void | Delete () |
Delete a VTK object. More... | |
virtual void | FastDelete () |
Delete a reference to this object. More... | |
void | InitializeObjectBase () |
void | Print (ostream &os) |
Print an object to an ostream. More... | |
virtual void | Register (vtkObjectBase *o) |
Increase the reference count (mark as used by another object). More... | |
virtual void | UnRegister (vtkObjectBase *o) |
Decrease the reference count (release by another object). More... | |
int | GetReferenceCount () |
Return the current reference count of this object. More... | |
void | SetReferenceCount (int) |
Sets the reference count. More... | |
void | PrintRevisions (ostream &) |
Legacy. More... | |
virtual void | PrintHeader (ostream &os, vtkIndent indent) |
Methods invoked by print to print information about the object including superclasses. More... | |
virtual void | PrintTrailer (ostream &os, vtkIndent indent) |
Methods invoked by print to print information about the object including superclasses. More... | |
Static Public Member Functions | |
static vtkTypeBool | IsTypeOf (const char *type) |
static vtkInitialValueProblemSolver * | SafeDownCast (vtkObjectBase *o) |
Static Public Member Functions inherited from vtkObject | |
static vtkObject * | New () |
Create an object with Debug turned off, modified time initialized to zero, and reference counting on. More... | |
static void | BreakOnError () |
This method is called when vtkErrorMacro executes. More... | |
static void | SetGlobalWarningDisplay (int val) |
This is a global flag that controls whether any debug, warning or error messages are displayed. More... | |
static void | GlobalWarningDisplayOn () |
This is a global flag that controls whether any debug, warning or error messages are displayed. More... | |
static void | GlobalWarningDisplayOff () |
This is a global flag that controls whether any debug, warning or error messages are displayed. More... | |
static int | GetGlobalWarningDisplay () |
This is a global flag that controls whether any debug, warning or error messages are displayed. More... | |
Static Public Member Functions inherited from vtkObjectBase | |
static vtkTypeBool | IsTypeOf (const char *name) |
Return 1 if this class type is the same type of (or a subclass of) the named class. More... | |
static vtkObjectBase * | New () |
Create an object with Debug turned off, modified time initialized to zero, and reference counting on. More... | |
Protected Member Functions | |
virtual vtkObjectBase * | NewInstanceInternal () const |
vtkInitialValueProblemSolver () | |
~vtkInitialValueProblemSolver () override | |
virtual void | Initialize () |
Protected Member Functions inherited from vtkObject | |
vtkObject () | |
~vtkObject () override | |
void | RegisterInternal (vtkObjectBase *, vtkTypeBool check) override |
void | UnRegisterInternal (vtkObjectBase *, vtkTypeBool check) override |
void | InternalGrabFocus (vtkCommand *mouseEvents, vtkCommand *keypressEvents=nullptr) |
These methods allow a command to exclusively grab all events. More... | |
void | InternalReleaseFocus () |
These methods allow a command to exclusively grab all events. More... | |
Protected Member Functions inherited from vtkObjectBase | |
vtkObjectBase () | |
virtual | ~vtkObjectBase () |
virtual void | CollectRevisions (ostream &) |
virtual void | ReportReferences (vtkGarbageCollector *) |
vtkObjectBase (const vtkObjectBase &) | |
void | operator= (const vtkObjectBase &) |
Protected Attributes | |
vtkFunctionSet * | FunctionSet |
double * | Vals |
double * | Derivs |
int | Initialized |
vtkTypeBool | Adaptive |
Protected Attributes inherited from vtkObject | |
bool | Debug |
vtkTimeStamp | MTime |
vtkSubjectHelper * | SubjectHelper |
Protected Attributes inherited from vtkObjectBase | |
vtkAtomicInt32 | ReferenceCount |
vtkWeakPointerBase ** | WeakPointers |
Integrate a set of ordinary differential equations (initial value problem) in time.
Given a vtkFunctionSet which returns dF_i(x_j, t)/dt given x_j and t, vtkInitialValueProblemSolver computes the value of F_i at t+deltat.
Definition at line 40 of file vtkInitialValueProblemSolver.h.
Definition at line 43 of file vtkInitialValueProblemSolver.h.
Enumerator | |
---|---|
OUT_OF_DOMAIN | |
NOT_INITIALIZED | |
UNEXPECTED_VALUE |
Definition at line 116 of file vtkInitialValueProblemSolver.h.
|
protected |
|
overrideprotected |
|
static |
|
virtual |
Return 1 if this class is the same type of (or a subclass of) the named class.
Returns 0 otherwise. This method works in combination with vtkTypeMacro found in vtkSetGet.h.
Reimplemented from vtkObjectBase.
Reimplemented in vtkRungeKutta45, vtkRungeKutta4, and vtkRungeKutta2.
|
static |
|
protectedvirtual |
Reimplemented in vtkRungeKutta45, vtkRungeKutta4, and vtkRungeKutta2.
vtkInitialValueProblemSolver* vtkInitialValueProblemSolver::NewInstance | ( | ) | const |
|
overridevirtual |
Methods invoked by print to print information about the object including superclasses.
Typically not called by the user (use Print() instead) but used in the hierarchical print process to combine the output of several classes.
Reimplemented from vtkObject.
Reimplemented in vtkRungeKutta45, and vtkRungeKutta4.
|
inlinevirtual |
Given initial values, xprev , initial time, t and a requested time interval, delT calculate values of x at t+delTActual (xnext).
For certain concrete sub-classes delTActual != delT. This occurs when the solver supports adaptive stepsize control. If this is the case, the solver tries to change to stepsize such that the (estimated) error of the integration is less than maxError. The solver will not set the stepsize smaller than minStep or larger than maxStep. Also note that delT is an in/out argument. Adaptive solvers will modify delT to reflect the best (estimated) size for the next integration step. An estimated value for the error is returned (by reference) in error. Note that only some concrete sub-classes support this. Otherwise, the error is set to 0. This method returns an error code representing the nature of the failure: OutOfDomain = 1, NotInitialized = 2, UnexpectedValue = 3
Reimplemented in vtkRungeKutta45, vtkRungeKutta4, and vtkRungeKutta2.
Definition at line 68 of file vtkInitialValueProblemSolver.h.
|
inlinevirtual |
Given initial values, xprev , initial time, t and a requested time interval, delT calculate values of x at t+delTActual (xnext).
For certain concrete sub-classes delTActual != delT. This occurs when the solver supports adaptive stepsize control. If this is the case, the solver tries to change to stepsize such that the (estimated) error of the integration is less than maxError. The solver will not set the stepsize smaller than minStep or larger than maxStep. Also note that delT is an in/out argument. Adaptive solvers will modify delT to reflect the best (estimated) size for the next integration step. An estimated value for the error is returned (by reference) in error. Note that only some concrete sub-classes support this. Otherwise, the error is set to 0. This method returns an error code representing the nature of the failure: OutOfDomain = 1, NotInitialized = 2, UnexpectedValue = 3
Reimplemented in vtkRungeKutta45, vtkRungeKutta4, and vtkRungeKutta2.
Definition at line 78 of file vtkInitialValueProblemSolver.h.
|
inlinevirtual |
Given initial values, xprev , initial time, t and a requested time interval, delT calculate values of x at t+delTActual (xnext).
For certain concrete sub-classes delTActual != delT. This occurs when the solver supports adaptive stepsize control. If this is the case, the solver tries to change to stepsize such that the (estimated) error of the integration is less than maxError. The solver will not set the stepsize smaller than minStep or larger than maxStep. Also note that delT is an in/out argument. Adaptive solvers will modify delT to reflect the best (estimated) size for the next integration step. An estimated value for the error is returned (by reference) in error. Note that only some concrete sub-classes support this. Otherwise, the error is set to 0. This method returns an error code representing the nature of the failure: OutOfDomain = 1, NotInitialized = 2, UnexpectedValue = 3
Reimplemented in vtkRungeKutta45, vtkRungeKutta4, and vtkRungeKutta2.
Definition at line 88 of file vtkInitialValueProblemSolver.h.
|
pure virtual |
Given initial values, xprev , initial time, t and a requested time interval, delT calculate values of x at t+delTActual (xnext).
For certain concrete sub-classes delTActual != delT. This occurs when the solver supports adaptive stepsize control. If this is the case, the solver tries to change to stepsize such that the (estimated) error of the integration is less than maxError. The solver will not set the stepsize smaller than minStep or larger than maxStep. Also note that delT is an in/out argument. Adaptive solvers will modify delT to reflect the best (estimated) size for the next integration step. An estimated value for the error is returned (by reference) in error. Note that only some concrete sub-classes support this. Otherwise, the error is set to 0. This method returns an error code representing the nature of the failure: OutOfDomain = 1, NotInitialized = 2, UnexpectedValue = 3
Implemented in vtkRungeKutta45, vtkRungeKutta4, and vtkRungeKutta2.
|
virtual |
Set / get the dataset used for the implicit function evaluation.
|
virtual |
Set / get the dataset used for the implicit function evaluation.
|
inlinevirtual |
Returns 1 if the solver uses adaptive stepsize control, 0 otherwise.
Definition at line 114 of file vtkInitialValueProblemSolver.h.
|
protectedvirtual |
Reimplemented in vtkRungeKutta45, and vtkRungeKutta4.
|
protected |
Definition at line 129 of file vtkInitialValueProblemSolver.h.
|
protected |
Definition at line 131 of file vtkInitialValueProblemSolver.h.
|
protected |
Definition at line 132 of file vtkInitialValueProblemSolver.h.
|
protected |
Definition at line 133 of file vtkInitialValueProblemSolver.h.
|
protected |
Definition at line 134 of file vtkInitialValueProblemSolver.h.